Home
Class 12
MATHS
Let Delta =|{:(-bc,b^(2)+bc,c^(2)+bc),(a...

Let `Delta =|{:(-bc,b^(2)+bc,c^(2)+bc),(a^(2)+ac,-ac,c^(2)+ac),(a^(2)+ab,b^(2)+ab,-ab):}|` and the equation
`x^(3)-px^(2)+qx-r=0` has roots a,b,c, where a,b,c `in R^(+)`
If a,b,c are in GP then

A

`r^(3)=p^(3)q`

B

`p^(3)=r^(3)q`

C

`p^(3)=q^(3)r`

D

`q^3=p^(3)r`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Let Delta =|{:(-bc,b^(2)+bc,c^(2)+bc),(a^(2)+ac,-ac,c^(2)+ac),(a^(2)+ab,b^(2)+ab,-ab):}| and the equation x^(3)-px^(2)+qx-r=0 has roots a,b,c, where a,b,c in R^(+) The value of Delta is

If Deltan=|{:(a^(2)+n,ab,ac),(ab,b^(2)+n,bc),(ac,bc,c^(2)+n):}|,n in N and the equation x^(3)-lambdax^(2)+11x-6=0 has roots a,b,c and a,b,c are in AP. The value of (Delta2_(n))/(Delta_(n)) is

If Deltan=|{:(a^(2)+n,ab,ac),(ab,b^(2)+n,bc),(ac,bc,c^(2)+n):}|,n in N and the equation x^(3)-lambdax^(2)+11x-6=0 has roots a,b,c and a,b,c are in AP. The value of sum_(r=1)^(30)((27Delta_(r)-Delta3_(r))/(27r^(2))) is

The determinant Delta=|{:(a^(2)+x^(2),ab,ac),(ab,b^(2)+x^(2),bc),(ac,bc,c^(2)+x^(2)):}| is divisible by

Prove that |{:(a^2,bc,ac+c^2),(a^2+ab,b^2,ac),(ab,b^2+bc,c^2):}|=4a^2b^2c^2

If b^(2)ge4ac for the equation ax^(4)+bx^(2)+c=0 then all the roots of the equation will be real if

If a,b, c epsilon R(a!=0) and a+2b+4c=0 then equation ax^(2)+bx+c=0 has

Evaluate Delta=|{:(1,a,bc),(1,b,ca),(1,c,ab):}|

If the roots of the equation (b-c)x^2+(c-a)x+(a-b)=0 are equal then a,b,c will be in

The determinant |{:(b^2-ab,b-c,bc-ac),(ab-a^2,a-b,b^2-ab),(bc-ac,c-a,ab-a^2):}| equals …….