Home
Class 12
MATHS
If Deltan=|{:(a^(2)+n,ab,ac),(ab,b^(2)+...

If `Deltan=|{:(a^(2)+n,ab,ac),(ab,b^(2)+n,bc),(ac,bc,c^(2)+n):}|,n in` N and the equation
`x^(3)-lambdax^(2)+11x-6=0` has roots a,b,c and a,b,c are in AP.
The value of `(Delta2_(n))/(Delta_(n))` is

A

`lt 8`

B

`=8`

C

`gt 8`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If Deltan=|{:(a^(2)+n,ab,ac),(ab,b^(2)+n,bc),(ac,bc,c^(2)+n):}|,n in N and the equation x^(3)-lambdax^(2)+11x-6=0 has roots a,b,c and a,b,c are in AP. The value of sum_(r=1)^(30)((27Delta_(r)-Delta3_(r))/(27r^(2))) is

Let Delta =|{:(-bc,b^(2)+bc,c^(2)+bc),(a^(2)+ac,-ac,c^(2)+ac),(a^(2)+ab,b^(2)+ab,-ab):}| and the equation x^(3)-px^(2)+qx-r=0 has roots a,b,c, where a,b,c in R^(+) The value of Delta is

The determinant Delta=|{:(a^(2)+x^(2),ab,ac),(ab,b^(2)+x^(2),bc),(ac,bc,c^(2)+x^(2)):}| is divisible by

Prove that |{:(a^2,bc,ac+c^2),(a^2+ab,b^2,ac),(ab,b^2+bc,c^2):}|=4a^2b^2c^2

Equation x^(n)-1=0,ngt1,ninN, has roots 1,a_(1),a_(2),...,a_(n),. The value of sum_(r=2)^(n)(1)/(2-a_(r)), is

The determinant |{:(b^2-ab,b-c,bc-ac),(ab-a^2,a-b,b^2-ab),(bc-ac,c-a,ab-a^2):}| equals …….

If x^2+3x+5=0 and a x^2+b x+c=0 have common root/roots and a ,b ,c in N , then find the minimum value of a+b+c .

If a^(2) + 2bc, b^(2) + 2ac, c^(2) + 2ab are in A.P then prove that (1)/(b-c), (1)/(c-a) and (1)/(a-b) are in A.P.

If a root of the equation n^(2)sin^(2)x-2sinx-(2n+1)=0 lies in [0,pi/2] the minimum positive integer value of n is

S_(n) is the sum of n terms of an A.P. If S_(2n)= 3S_(n) then prove that (S_(3n))/(S_(n))= 6