Home
Class 12
MATHS
If Deltan=|{:(a^(2)+n,ab,ac),(ab,b^(2)+...

If `Deltan=|{:(a^(2)+n,ab,ac),(ab,b^(2)+n,bc),(ac,bc,c^(2)+n):}|,n in` N and the equation
`x^(3)-lambdax^(2)+11x-6=0` has roots a,b,c and a,b,c are in AP.
The value of `sum_(r=1)^(30)((27Delta_(r)-Delta3_(r))/(27r^(2))) ` is

A

130

B

190

C

280

D

340

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If Deltan=|{:(a^(2)+n,ab,ac),(ab,b^(2)+n,bc),(ac,bc,c^(2)+n):}|,n in N and the equation x^(3)-lambdax^(2)+11x-6=0 has roots a,b,c and a,b,c are in AP. The value of (Delta2_(n))/(Delta_(n)) is

Let Delta =|{:(-bc,b^(2)+bc,c^(2)+bc),(a^(2)+ac,-ac,c^(2)+ac),(a^(2)+ab,b^(2)+ab,-ab):}| and the equation x^(3)-px^(2)+qx-r=0 has roots a,b,c, where a,b,c in R^(+) The value of Delta is

The determinant Delta=|{:(a^(2)+x^(2),ab,ac),(ab,b^(2)+x^(2),bc),(ac,bc,c^(2)+x^(2)):}| is divisible by

Equation x^(n)-1=0,ngt1,ninN, has roots 1,a_(1),a_(2),...,a_(n),. The value of sum_(r=2)^(n)(1)/(2-a_(r)), is

Prove that |{:(a^2,bc,ac+c^2),(a^2+ab,b^2,ac),(ab,b^2+bc,c^2):}|=4a^2b^2c^2

The value of the lim_(n->oo)tan{sum_(r=1)^ntan^(- 1)(1/(2r^2))} is equal to

Prove that: {:|(1,a, a^2-bc), (1,b,b^2-ca),(1,c,c^2-ab)|:}=0

The determinant |{:(b^2-ab,b-c,bc-ac),(ab-a^2,a-b,b^2-ab),(bc-ac,c-a,ab-a^2):}| equals …….

sum_(r=1)^n(2r+1)=...... .

Sum of the series sum_(r=1)^(n) (r^(2)+1)r! is