Home
Class 12
MATHS
If ane0, bne0,cne0 " "and " |{:(1+a,1,1)...

If `ane0, bne0,cne0 " "and " |{:(1+a,1,1),(1+b,1+2b,1),(1+c,1+c,1+3c):}|`=0
the value of `|a^(-1)+b^(-1)+c^(-1)|` is equal to

Text Solution

Verified by Experts

The correct Answer is:
3
Promotional Banner

Similar Questions

Explore conceptually related problems

If ane0,bne0,cne0 and |{:(0,x^2+a,x^4+b),(x^2-a,0,x-c),(x^3-b,x^2+c,0):}|=? , for x=0

|{:(a,-b,a-b),(b,c,b-c),(2,1,0):}|=0 then a,b,c are in …………..

Prove that |{:(a+1,1,1),(1,b+1,1),(1,1,c+1):}|=abc(1/a+1/b+1/c+1)

If |a|=1,|b|=3 and |c|=5 , then the value of [a-b" "b-c" "c-a] is

Prove that: {:|(1,a, a^2-bc), (1,b,b^2-ca),(1,c,c^2-ab)|:}=0

If A+B+C = 0 then prove that |{:(1,cosC,cosB),(cosC,1,cosA),(cosB,cosA,1):}|=0

If (a, 1, 1), (1, b, 1) and (1, 1, c) are coplanar then prove that (1)/(1-a)+(1)/(1-b)+(1)/(1-c)=1 .

If the maxtrix [{:(0,a,3),(2,b,-1),(c,1,0):}] is a skew symmetric matrix , find the values of a,b,andc.

If |{:(a,,a^(2),,1+a^(3)),(b,,b^(2),,1+b^(3)),(c,,c^(2),,1+c^(3)):}|=0 and the vectors overset(to)((A)) =(1, a, a^(2)) , overset(to)((B)) = (1, b, b^(2)) , overset(to)((C))=(1,c,c^(2)) are non-coplanar then the value of abc = ….