Home
Class 12
MATHS
Statement -1 If Delta(r)=|{:(r,r+1),(r+3...

Statement -1 If `Delta(r)=|{:(r,r+1),(r+3,r+4):}|` then `sum_(r=1)^(n) Delta(r)=-3n`
Satement-2 If `Delta(r)=|{:(f_(1)(r),f_(2)(r)),(f_(3)(r),f_(4)(r)):}|`
`Sigma_(r=1)^(n) Delta (r)={:abs((Sigma_(r=1)^(n)f_1(r),Sigma_(r=1)^(n)f_2(r)),(Sigma_(r=1)^(n)f_3(r),Sigma_(r=1)^(n) f_4(r))):}`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(r=1)^n(2r+1)=...... .

If sum_(r=1)^(n)T_(r)=(n)/(8)(n+1)(n+2)(n+3)," find "sum_(r=1)^(n)(1)/(T_(r)) .

If t_(1)=1,t_(r )-t_( r-1)=2^(r-1),r ge 2 , find sum_(r=1)^(n)t_(r ) .

f(n)=sum_(r=1)^(n) [r^(2)(""^(n)C_(r)-""^(n)C_(r-1))+(2r+1)(""^(n)C_(r ))] , then

If Delta_(r)=|{:(r,r-1),(r-1,r):}| where is a natural number, the value of root(10)(sum_(r=1)^(1024))Delta_(r) is

((n),(r))+((n),(r-1))=((n+1),(r-1))

((n),(r))+2.((n),(r-1))+((n),(r-2))=((n+2),(r))

Let |Z_(r) - r| le r, Aar = 1,2,3….,n . Then |sum_(r=1)^(n)z_(r)| is less than

Sum of the series sum_(r=1)^(n) (r^(2)+1)r! is

Show that |{:(sum_(r=1)^(16)2^r,a,2(2^(16)-1)),(3sum_(r=1)^(16)4^r,b,4(4^(16)-1)),(7sum_(r=1)^(16)8^r,c,8(8^(16)-1)):}|=0