Home
Class 12
MATHS
Let f(x)=|1+sin^2x cos^2x4sin2xsin^2\ ...

Let `f(x)=|1+sin^2x cos^2x4sin2xsin^2\ \ x1+cos^2x4sin2xsin^2xcos^2x1+4sin2x|,\ ` then the maximum value of `f(x)=` a.`2` b. `4` c.`6` d. `8`

Text Solution

Verified by Experts

The correct Answer is:
(i) 6 (ii) 0
Promotional Banner

Similar Questions

Explore conceptually related problems

cos 4x =1- 8 sin ^(2) x cos ^(2) x

Let f(x) = |(2cos^2x, sin2x, -sinx), (sin2x, 2 sin^2x, cosx), (sinx, -cosx,0)| , then the value of int_0^(pi//2){f(x) + f'(x)} dx is

Prove that cos4x=1-8sin^(2)xcos^(2)x

cos ^(2) 2x -cos ^(2) 6x = sin 4x sin 8x

Prove that cos^(2)2x-cos^(2)6x=sin4xsin8x

Prove that sin(2x)+2sin(4x)+sin(6x)=4cos^(2)xsin4x

Prove that sin^(2)6x-sin^(2)4x=sin2xsin10x

if sin x + sin^2 x = 1 , then the value of cos^2 x + cos^4x is

Let f(x)=sin^(-1)2x + cos^(-1)2x + sec^(-1)2x . Then the sum of the maximum and minimum values of f(x) is