Home
Class 12
MATHS
If f,g and h are differentiable function...

If f,g and h are differentiable functions of x and `Delta = |{:(f , g , h), ((xf)' , (xg)' , (xh)'), ((x^(2) f)'' , (x^(2) g)'', (x^(2) h)''):}|` then prove that `Delta'=|{:(f , g , h), (f' , g' , h'), ((x^(3) f'')' , (x^(3) g'')', (x^(3) h)'')':}|`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f,g, h be differentiable functions of x. if Delta = |(f,g,h),((xf)',(xg)',(xh)'),((x^(2) f)'',(x^(2)g)'',(x^(2) h)'')|and, Delta' = |(f,g,h),(f',g',h'),((x^(n)f'')',(x^(n) g'')',(x^(n) h'')')| , then n =

If f(x) g(x) and h(x) are three polynomials of degree 2 and Delta = |( f(x), g(x), h(x)), (f'(x), g'(x), h'(x)), (f''(x), g''(x), h''(x))| then Delta(x) is a polynomial of degree (dashes denote the differentiation).

f and g are real functions defined by f(x)= 2x + 1 and g(x) =4x -7. If f(x) = g(x) then x = …. .

f and g are real functions defined by f(x)= 2x + 1 and g(x) =4x -7. If f(x) < g(x) then x … 4 .

If f and g are two real valued functions defined as f(x)= 2x+1 and g(x)= x^(2)+1 , then find fg

Let f , g and h be functions from R to R . Show that , (f +g) oh = foh + goh (f.g) oh = (foh)+ (goh)

If f and g are two real valued functions defined as f(x)= 2x+1 and g(x)= x^(2)+1 , then find f+g

If f and g are two real valued functions defined as f(x)= 2x+1 and g(x)= x^(2)+1 , then find f-g