Home
Class 12
MATHS
prove that |(1/(a-a1)^2,1/(a-a1),1/a1),...

prove that `|(1/(a-a_1)^2,1/(a-a_1),1/a_1),(1/(a-a_2)^2,1/(a-a_2),1/a_2),(1/(a-a_3)^2,1/(a-a_3),1/a_3)|=(-a^2(a_1-a_2)(a_2-a_3)(a_3-a_1))/(a_1a_2a_3(a-a_1)^2(a-a_2)^2(a-a_3)^2)`.

Text Solution

Verified by Experts

The correct Answer is:
`-a^(2)(a_(1)-a_(2))(a_(2)-a_(3))(a_(3)-a_(1))`
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: {:|(a^2+2a,2a+1,1), (2a+1,a+2,1),(3,3,1)|:}=(a-1)^3 .

Prove that: (1)/((1+a)(2+a)) + (1)/((2+a)(3+a))+ (1)/((3+a)(4+a)) + …..oo=(1)/(1+ a)

Value of |{:(1+x_(1),1+x_(1)x,1+x_(1)x^(2)),(1+x_(2),1+x_(2)x,1+x_(2)x^(2)),(1+x_(3),1+x_(3)x,1+x_(3)x^(2)):}| depends upon

Prove that, tan^(-1)x+"tan"^(-1)(2x)/(1-x^(2))=tan^(-1)((3x-x^(3))/(1-3x^(2))),|x|lt1/sqrt3

Prove that 1^2/(1.3)+2^2/(3.5)+3^2/(5.7)+.....+n^2/((2n-1)(2n+1))=((n)(n+1))/((2(2n+1))

D=|{:(a^2+2a,2a+1,1),(2a+1,a+2,1),(3,3,1):}| then,

If a_1, a_2, a_3, be terms of an A.P. if (a_1+a_2+...+a_p)/(a_1+a_2+...+a_q)=(p^2)/(q^2), p!=q ,t h e n(a_6)/(a_(21)) equals

For all ngt=1 , prove that , (1)/(1.2) + (1)/(2.3) + (1)/(3.4) + ……+ (1)/(n(n+1)) = (n)/(n+1)