Home
Class 12
MATHS
If a1,a2,a3,.....an.... are in G.P. then...

If `a_1,a_2,a_3,.....a_n....` are in G.P. then the determinant `Delta=|[loga_n,loga_(n+1),loga_(n+2)],[loga_(n+3),loga_(n+4),loga_(n+5)],[loga_(n+6),loga_(n+7),loga_(n+8)]|` is equal to-

A

1

B

0

C

4

D

2

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If a_1, a_2 a_n ,\ a_(n+1) are in GP and a_1>0AAI ,\ t h e n |loga_nloga_(n+2)loga_(n+4)loga_(n+6)loga_(n+8)loga_(n+10)loga_(n+12)loga_(n+14)loga_(n+16)| is equal to- 0 b. nloga_n c. n(n+1)loga_n d. none of these

If a_1, a_2, a_3,.....a_n are in H.P. and a_1 a_2+a_2 a_3+a_3 a_4+.......a_(n-1) a_n=ka_1 a_n , then k is equal to

if a,a_1,a_2,a_3,.........,a_(2n),b are in A.P. and a,g_1,g_2,............g_(2n) ,b are in G.P. and h is H.M. of a,b then (a_1+a_(2n))/(g_1*g_(2n))+(a_2+a_(2n-1))/(g_2*g_(2n-1))+............+(a_n+a_(n+1))/(g_n*g_(n+1)) is equal

If a_1,a_2,a_3,.....,a_(n+1) be (n+1) different prime numbers, then the number of different factors (other than1) of a_1^m.a_2.a_3...a_(n+1) , is

Solve the system of equations: (log)_a x(log)_a(x y z)=48, (log)_a y log_a(x y z)=12 , a >0,\ a!=1(log)_a z log_a(x y z)=84\

lf n! ,3n! and (n+1)! are in G.P, then n!, 5n! and (n+1)! are in

lim_(n -> oo) (((n+1)(n+2)(n+3).......3n) / n^(2n))^(1/n) is equal to

If a^2+b^2=23 a b , then prove that log((a+b))/5=1/2(loga+logb)dot

If a_1,a_2,a_3, ,a_n are in A.P., where a_i >0 for all i , show that 1/(sqrt(a_1)+sqrt(a_2))+1/(sqrt(a_1)+sqrt(a_3))++1/(sqrt(a_(n-1))+sqrt(a_n))=(n-1)/(sqrt(a_1)+sqrt(a_n))dot

Solve the system the equations (a x)^(loga)=(b y)^(logb); b^(logx)=a^(logy) where a >0, b >0 and a!=b ,\ a b!=1