Home
Class 12
MATHS
If D =|{:(1,1,1),(1,1+x,1),(1,1,1+y):}|"...

If D =`|{:(1,1,1),(1,1+x,1),(1,1,1+y):}|"for" " "xne0,yne0` then D is

A

divisible by neither x nor y

B

divisible by both x and y

C

divisible by x but not y

D

divisible by y but not x

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If |{:(1,2,x),(1,1,1),(2,1,-1):}|=0 then find x.

If D=|[1, 1, 1], [1, 1+x, 1], [1, 1, 1+y]| for x!=0, y!=0 then D is (1) divisible by neither x nor y (2) divisible by both x and y (3) divisible by x but not y (4) divisible by y but not x

If x,y,z in R. xgtygtz and D = |{:((x+1)^2,(y+1)^2,(z+1)^2),(x,y,z),(1,1,1):}| , then D is ………

If x,y,z are all different from zero and |{:(1+x,1,1),(1,1+y,1),(1,1,1+z):}|=0 then value of x^(-1)+y^(-1)+z^(-1) is ".........."

Solve that |{:(1+x,1-x,1-x),(1-x,1+x,1-x),(1-x,1-x,1+x):}|=0

If A=[{:(-1,2,0),(-1,1,1),(0,1,0):}] then show that A^(-1)=A^2

Let f(x) = |{:(cos x ,1,0 ),(1,2cosx,1),(0,1,2cosx):}| then

If x,y,z are different and Delta=|{:(x,x^2,1+x^3),(y,y^2,1+y^3),(z,z^2,1+z^3):}| =0 then show that 1+xyz=0

If a,b,c and d are the roots of the equation x^(4)+2x^(3)+4x^(2)+8x+16=0 the value of the determinant |{:(1+a,1,1,1),(1,1+b,1,1),(1,1,1+c,1),(1,1,1,1+d):}| is

If [1" "x" "1][{:(1,3,2),(0,5,1),(0,3,2):}][{:(1),(1),(x):}]=O , then x=.....