Home
Class 12
MATHS
Let a,b,c be such that b(a+c)ne 0. If |{...

Let a,b,c be such that b(a+c)`ne 0`. If `|{:(,a,a+1,a-1),(,-b,b+1,b-1),(,c,c-1,c+1):}|+|{:(,a+1,b+1,c-1),(,a-1,b-1,c+1),(,(-1)^(n+2)a,(-1)^(n+1)b,(-1)^(n)c):}|=0`, Then the value of 'n' is:

A

any integer

B

zero

C

an even integer

D

any odd integer

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that |{:(a+1,1,1),(1,b+1,1),(1,1,c+1):}|=abc(1/a+1/b+1/c+1)

|{:(a,-b,a-b),(b,c,b-c),(2,1,0):}|=0 then a,b,c are in …………..

Prove that: {:|(1,a, a^2-bc), (1,b,b^2-ca),(1,c,c^2-ab)|:}=0

If the value of the determinant |{:(a,1,1),(1,b,1),(1,1,c):}| is positive then

Evaluate Delta=|{:(1,a,bc),(1,b,ca),(1,c,ab):}|

Without expanding the determinant prove that |{:(a,a^2,bc),(b,b^2,ca),(c,c^2,ab):}|=|{:(1,a^2,a^3),(1,b^2,b^3),(1,c^2,c^3):}|

If ane0, bne0,cne0 " "and " |{:(1+a,1,1),(1+b,1+2b,1),(1+c,1+c,1+3c):}| =0 the value of |a^(-1)+b^(-1)+c^(-1)| is equal to

If |a|=1,|b|=3 and |c|=5 , then the value of [a-b" "b-c" "c-a] is

If (a^(n)+b^n)/ (a^(n-1) +b^(n-1)) is the A.M. between a and b, then find the value of n.