Home
Class 12
MATHS
If alpha,beta!=0 , and f(n)""=alpha^n+be...

If `alpha,beta!=0` , and `f(n)""=alpha^n+beta^n` and `| (3 , 1+f(1), 1+f(2)) (1+f(1), 1+f(2), 1+f(3)) (1+f(2), 1+f(3), 1+f(4)) |=K(1-alpha)^2(1-beta)^2(alpha-beta)^2` , then K is equal to (1) `alphabeta` (2) `1/(alphabeta)` (3) 1 (4) `-1`

A

1

B

-1

C

`alphabeta`

D

`1//alphabeta`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(n)=alpha^n+beta^n then show that |{:(3,1+f(1),1+f(2)),(1+f(1),1+f(2),1+f(3)),(1+f(2),1+f(3),1+f(4)):}|=(1-alpha)^2(1-beta)^2(alpha-beta)^2

If alpha,beta!=0 , and f(n)""=alpha^n+beta^n and |3 1+f(1)1+f(2)1+f(1)1+f(2)1+f(3)1+f(2)1+f(3)1+f(4)|=K(1-alpha)^2(1-beta)^2(alpha-beta)^2 , then K is equal to (1) alphabeta (2) 1/(alphabeta) (3) 1 (4) -1

If f(x)= x^(2 )+ 2x + 3 then find f(1), f(2), f(3)

if tanbeta=(nsinalphacosbeta)/(1-nsin^2alpha) then prove that tan(alpha-beta)=(1-n)tanalpha.

If f(1) = 1, f(n+1)= 2f (n) + 1, n ge 1 then f(n) = .........

If alpha, beta are the roots of x^(2)-3x+1=0 , then the equation whose roots are (1/(alpha-2),1/(beta-2)) is

If f'(x)=1-(4)/(x^(2)) and f(1)=6 then find f(x) and f(2).

f:R rarr R , f(x) = {(12x+5,x gt1),(x-4,xle1):} then find f(0),f(-1/2), f(3),f(-5) .

If alpha,beta are the roots of the equation ax^2+bx+c=0 and S_n=alpha^n+beta^n then evaluate |[3, 1+s_1, +s_2] , [1+s_1, 1+s_2, 1+s_3] , [1+s_2, 1+s_3, 1+s_4]|