Home
Class 12
MATHS
The total number of distinct x in R for ...

The total number of distinct `x in R` for which `|[x, x^2, 1+x^3] , [2x,4x^2,1+8x^3] , [3x, 9x^2,1+27x^3]|=10` is (A) 0 (B) 1 (C) 2 (D) 3

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The number of distinct real roots of x^4 - 4 x^3 + 12 x^2 + x - 1 = 0 is :

If p x^4+q x^3+r x^2+s x+t = |[x^2+3x, x-1, x+3],[x+1, 2-x, x-3], [x-3, x+4, 3x]| then

Determine which of the following polynomials has (x +1) as a factor. (i) x ^(3) -x ^(2) -x +1 (ii) x ^(4) - x ^(3) + x ^(2) -x +1 (iii) x ^(4) + 2x ^(3) + 2x ^(2) + x +1 (iv) x ^(3) -x ^(2) - (3- sqrt3) x + sqrt3

The number of real values of x satisfying |(x,3x+2,2x-1),(2x-1,4x,3x+1),(7x-2,17x+6,12x-1)|=0 is -

f : R rarr R , f(x) ={{:(2x,xgt3),(x^2,1ltxle3),(3x,xle1):} then find f (-1) + f(2) + f(4) .

Find the total number of parallel tangents of f_(1)(x)=x^(2)-x+1 and f_(2)(x)=x^(3)-x^(2)-2x+1 .

Integrate the following w.r.t. x. (i) 4x^(3) , (ii) x-1/x , (iii) 1/(2x+3) , (iv) cos (4x+3) (v) cos^(2) x

Factorise (i) x ^(2) - 2x ^(2) - x +2 (ii) x ^(3) - 3x ^(2) - 9x -5 (iii) x ^(3) + 13 x ^(2) + 32 x + 20 (iv) y ^(3) + y ^(2) -y -1

Use suitable idntities to find the following products (i) (x +5) (x +2) (ii) (x-5) (x-5) (iii) (3x +3) (3x -2) (iv) (x ^(2) + (1)/( x ^(2)) )(x ^(2) - (1)/( x ^(2))) (v) (1+x) (1+x)

Check whether x=1 is a factor of x^(3) + 9x^(2) - 4x -12 or not.