Home
Class 12
MATHS
A straight line L cuts the lines A B ,A ...

A straight line `L` cuts the lines `A B ,A Ca n dA D` of a parallelogram `A B C D` at points `B_1, C_1a n dD_1,` respectively. If `( vec A B_1)=lambda_1 vec A B ,( vec A D_1)=lambda_2 vec A Da n d( vec A C_1)=lambda_3 vec A C ,` then prove that `1/(lambda_3)=1/(lambda_1)+1/(lambda_2)` .

A

`(1)/(lambda_1)+(1)/(lambda_2)`

B

`(1)/(lambda_1)-(1)/(lambda_2)`

C

`-(lambda_1)+(lambda_2)`

D

`(lambda_1)+(lambda_2)`

Text Solution

Verified by Experts

The correct Answer is:
(a)
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin2A= lambda sin 2B prove that (tan(A+B)/tan(A-B))=(lambda+1)/(lambda-1)

squareABCD is a parallelogram. (A_(1)) and B_(1) are midpoints of the sides bar(BC) and bar(AD) respectively. If vec("AA")_(1)+vec(AB)_(1)=lambda vec(AC) then lambda = …………

If the vectors vec a , vec b ,a n d vec c form the sides B C ,C Aa n dA B , respectively, of triangle A B C ,t h e n

Statement 1: In "Delta"A B C , vec A B+ vec A B+ vec C A=0 Statement 2: If vec O A= vec a , vec O B= vec b ,t h e n vec A B= vec a+ vec b

The equation of the plane containing the lines vec r = vec (a_1) + lambda vec b and vec r = vec (a_2) + mu vec b is.............

If the lines vec r = vec a + lambda (vec b xx vec c) and vec r = vec b + mu (vec c xx vec a) are intersect then ...............

A B C D E is pentagon, prove that vec A B + vec B C + vec C D + vec D E+ vec E A = vec0 vec A B+ vec A E+ vec B C+ vec D C+ vec E D+ vec A C=3 vec A C

The position vectors of A, B,C and D are vec a , vec b , vec 2a+ vec 3b and vec a - vec 2b respectively. Show that vec (DB)=3 vec b -vec a and vec (AC) =vec a + vec 3b

' I ' is the incentre of triangle A B C whose corresponding sides are a , b ,c , rspectively. a vec I A+b vec I B+c vec I C is always equal to a. vec0 b. (a+b+c) vec B C c. ( vec a+ vec b+ vec c) vec A C d. (a+b+c) vec A B