Home
Class 12
MATHS
Two line whose are (x-3)/(2)=(y-2)/(3)=(...

Two line whose are `(x-3)/(2)=(y-2)/(3)=(z-1)/(lambda) and (x-2)/(3)=(y-3)/(2)=(z-2)/(3)` lie in the same plane, then,
Q. Point of intersection of the lines lies on

A

`3x+y+z=20`

B

`2x+y+z=25`

C

`3x+2y+z=24`

D

`x=y=z`

Text Solution

Verified by Experts

The correct Answer is:
(d)
Promotional Banner

Similar Questions

Explore conceptually related problems

Two line whose are (x-3)/(2)=(y-2)/(3)=(z-1)/(lambda) and (x-2)/(3)=(y-3)/(2)=(z-2)/(3) lie in the same plane, then, Q. Angle between the plane containing both the lines and the plane 4x+y+2z=0 is equal to

Two line whose are (x-3)/(2)=(y-2)/(3)=(z-1)/(lambda) and (x-2)/(3)=(y-3)/(2)=(z-2)/(3) lie in the same plane, then, Q. The value of sin^(-1)sinlambda is equal to

If the line (x-1)/(2)=(y+1)/(3)=(z-1)/(4) and (x-3)/(1)=(y-k)/(2)=(z)/(1) intersect, then k is equal to

If the straight lines (x-1)/(k)=(y-2)/(2)=(z-3)/(3) and (x-2)/(3)=(y-3)/(k)=(z-1)/(2) intersect at a point, then the integer k is equal to

Show that the lines (x-1)/(2)=(y-2)/(3)=(z-3)/(4) and (x-4)/(5)=(y-1)/(2)=z intersect. Also, find their point of intersection, Hint for solution : If shortest distance between two lines is zero then they are intersecting lines.

If the lines (x-1)/(-3)=(y-2)/(2k)=(z-3)/(2) and (x-1)/(3k)=(y-1)/(1)=(z-6)/(-5) are perpendicular, find the value of k.

The lines (x-1)/(3) = (y-1)/(-1) = (z+1)/0 and (x-4)/(2) = (y+0)/(0) = (z+1)/(3) are ......

Show that the two lines (x-1)/2=(y-2)/3=(z-3)/4 and (x-4)/5=(y-1)/2=z intersect. Find also the point of intersection of these lines.

Prove that the lines (x+1)/(3)=(y+3)/(5)=(z+5)/(7) and (x-2)/(1)=(y-4)/(4)=(z-6)/(7) are coplanar. Also, find the plane containing these two lines

The equation of plane containing intersecting lines (x+3)/(3)=(y)/(1)=(z-2)/(2) and (x-3)/(4)=(y-2)/(2)=(z-6)/(3) is