Home
Class 12
MATHS
Let a1x+b1y+c1z+d1=0 and a2x+b2y+c2z+d2=...

Let `a_1x+b_1y+c_1z+d_1=0 and a_2x+b_2y+c_2z+d_2=0 ` be two planes, where `d_1, d_2gt0`. Then, origin lies in acute angle, If `a_1a_2+b_1b_2+c_1c_2lt0` and origin lies in obtuse angle if `a_1a_2+b_1b_2+c_1c_2gt0`.
Further point `(x_1, y_1, z_1)` and origin both lie either in acute angle or in obtuse angle. If ( `a_1x_1+b_1y_1+c_1z_1+d_1)(a_2x_1+b_2y_1+c_2z_1+d_2)gt0`.
one of `(x_1, y_1, z_1)` and origin in lie in acute and the other in obtuse angle,If ( `a_1x_1+b_1y_1+c_1z_1+d_1)(a_2x_1+b_2y_1+c_2z_1+d_2)lt0`
Q. Given the planes `x+2y-3z+2=0 and x-2y+3z+7=0`. If a point P(1, 2, 2), then

A

O and P both lie in acute angle between the planes

B

O and P both lies in obtuse angle

C

O lies in acute angle, P lies in obtuse angle

D

O lies in obtuse angle, P lies in acute angle

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Let a_1x+b_1y+c_1z+d_1=0 and a_2x+b_2y+c_2z+d_2=0 be two planes, where d_1, d_2gt0 . Then, origin lies in acute angle, If a_1a_2+b_1b_2+c_1c_2lt0 and origin lies in obtuse angle if a_1a_2+b_1b_2+c_1c_2gt0 . Further point (x_1, y_1, z_1) and origin both lie either in acute angle or in obtuse angle. If ( a_1x_1+b_1y_1+c_1z_1+d_1)(a_2x_1+b_2y_1+c_2z_1+d_2)gt0 . one of (x_1, y_1, z_1) and origin in lie in acute and the other in obtuse angle,If ( a_1x_1+b_1y_1+c_1z_1+d_1)(a_2x_1+b_2y_1+c_2z_1+d_2)lt0 Q. Given the planes x+2y-3z+5=0 and 2x+y+3z+1=0 . If a point P(2, -1, 2). Then

Let a_1x+b_1y+c_1z+d_1=0 and a_2x+b_2y+c_2z+d_2=0 be two planes, where d_1, d_2gt0 . Then, origin lies in acute angle, If a_1a_2+b_1b_2+c_1c_2lt0 and origin lies in obtuse angle if a_1a_2+b_1b_2+c_1c_2gt0 . Further point (x_1, y_1, z_1) and origin both lie either in acute angle or in obtuse angle. If ( a_1x_1+b_1y_1+c_1z_1+d_1)(a_2x_1+b_2y_1+c_2z_1+d_2)gt0 . one of (x_1, y_1, z_1) and origin in lie in acute and the other in obtuse angle,If ( a_1x_1+b_1y_1+c_1z_1+d_1)(a_2x_1+b_2y_1+c_2z_1+d_2)lt0 Q. Given that planes 2x+3y-4z+7=0 and x-2y+3z-5=0 . If a point P(1, -2, 3), then

Show that two lines a_(1) x + b_(14) y + c_(1) = 0 and a_(2) x + b_(2) y + c_(2) = 0 , where b_(1) , b_(2) ne 0 are (i) Parallel if (a_1)/( b_1) = (a_2)/( b_2) and

Show that two lines a_(1) x + b_(14) y + c_(1) = 0 and a_(2) x + b_(2) y + c_(2) = 0 , where b_(1) , b_(2) ne 0 are Perpendicular if a_(1) a_(2) + b_(1) b_(2) =0 .

Show that the plane ax+by+cz+d=0 divides the line joining (x_1, y_1, z_1) and (x_2, y_2, z_2) in the ratio of (-(ax_1+ay_1+cz_1+d)/(ax_2+by_2+cz_2+d))

The equation of the line passing through (1, 1, 1) and perpendicular to the line of intersection of the planes x+2y-4z=0 and 2x-y+2z=0 is

Find the equation of the plane whch passes through the line a_1x+b_1y+c_1y+c_1z+d_1=0 a_2x+b_2y+c_2z+d_2=0 and which is parallel to the line (x-alpha)/l=(y-beta)/m=(z-gamma)/n

The angle between the planes bar.r (1,2,-1) = 3 and 2x -y + 2z = 2 is .......... .

If the distance of the plane x - y + z + lambda = 0 from the point (1, 1, 1) is d_1 and the distance of this point from the origin is d_2 and d_2d_2 = 5 then find the value of lambda .