Home
Class 12
MATHS
Find a unit vector normal to the plane t...

Find a unit vector normal to the plane through the points `(1, 1, 1), (-1, 2, 3) and (2, -1, 3)`.

Text Solution

Verified by Experts

The correct Answer is:
`pm(1)/(3)(2hat(i)+2hat(j)+hat(k))`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the equation of the plane through the points (2, 1, 0), (3, -2, -2) and (3, 1, 7).

Find the vector equation of the plane passing through the points (1, -2, 5) (0, -5, -1) and (-3, 5, 0). Transform the vector equation into cartesian equation.

Find equation of plane passing through the points P(1, 1, 1), Q(3, -1, 2) and R(-3, 5, -4) .

Find a unit vector perpendicualr to the plane which passes through the point P(1,-1,2),Q(2,0,-1) and R(0,2,1) .

Find the equation of the plane through the points (2, 1,-1) and (-1, 3, 4) and perpendicular to the plane x - 2y + 4z = 10.

Find the vector equation for the line passing through the points (-1, 0, 2) and (3, 4, 6).

Find the equation of the plane passing through the points (1, 2, 3) and (0, -1, 0) and parallel to the line (x-1)/(2)=(y+2)/(3)=(z)/(-3)

Find the equations of the planes that passes through three points. (a) (1, 1, -1), (6, 4, -5), (-4, -2, 3) (b) (1, 1, 0), (1, 2, 1), (-2, 2, -1)

Find the coordinates of the point where the line through the points A (3, 4, 1) and B (5, 1, 6) crosses the XY-plane.