Home
Class 12
MATHS
L1a n dL2 are two lines whose vector equ...

`L_1a n dL_2` are two lines whose vector equations are `L_1: vec r=lambda((costheta+sqrt(3)) hat i +(sqrt(2)sintheta) hat j+(costheta-sqrt(3)) hat k)` `L_2: vec r=mu(a hat i+b hat j+c hat k)` , where `lambdaa n dmu` are scalars and `alpha` is the acute angel between `L_1a n dL_2dot` If the angel `alpha` is independent of `theta,` then the value of `alpha` is a. `pi/6` b. `pi/4` c. `pi/3` d. `pi/2`

A

`(phi)/(6)`

B

`(phi)/(4)`

C

`(phi)/(3)`

D

`(phi)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
(a)
Promotional Banner

Similar Questions

Explore conceptually related problems

The line whose vector equation are r=2hat(i)-3hat(j)+7hat(k)+lambda(2hat(i)+phat(j)+5hat(k)) and r=hat(i)+2hat(j)+3hat(k)+mu(3hat(i)-phat(j)+phat(k)) are perpendicular for all values of lambda and mu if p eqauls to

Find the angel between the planes 2x+y-2z+3=0a n d vec rdot(6 hat i+3 hat j+2 hat k)=5.

Find the vector equation of the following planes in Cartesian form: vec r= hat i- hat j+lambda( hat i+ hat j+ hat k)+mu( hat i-2 hat j+3 hat k)dot

Find the shortest distance between the lines vec r=(4 hat i- hat j)+lambda( hat i+2 hat j-3 hat k)a n d vec r=( hat i- hat j+2 hat k)+mu(2 hat i+4 hat j-5 hat k)dot .

The vector equation of the plane containing the line vec r (-2 hat i - 3 hat + 4 hatk) + lambda (3 hat i - 2 hat j - hat k) and the point hat i + 2 hatj + 3 hat k is ..........

Find the angle between vec(P) = - 2hat(i) +3 hat(j) +hat(k) and vec(Q) = hat(i) +2hat(j) - 4hat(k)

The vector equation of the line joining the pionts hat(i) - 2hat (j)+ hat k and -2 hat j + 3 hatk ........

Find the shortest distance between lines vec r=( hat i+2 hat j+ hat k)+lambda(2 hat i+ hat j+2 hat k)a n d vec r=2 hat i- hat j- hat k+mu(2 hat i+ hat j+2 hat k)dot

Find the angle between the line vec r= hat i+2 hat j- hat k+lambda( hat i- hat j+ hat k) and the plane vec r .(2 hat i- hat j+ hat k)=4.