Home
Class 12
MATHS
Statement-I If r=xhat(i)+yhat(j)+zhat(k)...

Statement-I If `r=xhat(i)+yhat(j)+zhat(k)`, then equation `r times(2hat(i)-hat(j)+3hat(k))=3hat(i)+hat(k)` repesents a straight line.
Statement-II If `r=xhat(i)+yhat(j)+zhat(k)`, then equation `r times(hat(i)+2hat(j)-3hat(k))=3hat(i)-hat(j)` repesents a straight line.

A

Statement I is true, Statement II is also true, Statement-II is the correct explanation of Statement-I.

B

Statement-I is true, Statement-II is also true, Statement-II is not the correct explanation of Statement-I.

C

Statement-I is true, Statement-II is false.

D

Statement-I is false, Statement -II is true.

Text Solution

Verified by Experts

The correct Answer is:
(d)
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the angle between vec(P) = - 2hat(i) +3 hat(j) +hat(k) and vec(Q) = hat(i) +2hat(j) - 4hat(k)

Find the components of vector vec(a)=3hat(i)+4hat(j) along the direction of vectors hat(i)+hat(j) & hat(i)-hat(j)

The points hat(i)-hat(j)+3hat(k) and 3hat(i)+3hat(j)+3hat(k) are equidistant from the plane rcdot(5hat(i)+2hat(j)-7hat(k))+9=0 , then they are

The compenent of vec(A)=hat(i)+hat(j)+5hat(j) perpendicular to vec(B)=3hat(i)+4hat(j) is

Angle between the vectors vec(a)=-hat(i)+2hat(j)+hat(k) and vec(b)=xhat(i)+hat(j)+(x+1)hat(k)

hat(i). ( hat(k) xx hat(j)) + hat(j) .(hat(i) xx hat(k) ) + hat(k). ( hat(j) xx hat(i) ) + hat(i). (hat(i) xx hat(j) ) + hat(j) . ( hat(j) xx hat(k) ) =...........

Find the angle between the pair of lines r=3hat(i)+2hat(j)-4hat(k)+lambda(hat(i)+2hat(j)+2hat(k)) r=5hat(i)-4hat(k)+mu(3hat(i)+2hat(j)+6hat(k))

Find the equation of sphere if it touches the plane rcdot(2hat(i)-2hat(j)-hat(k))=0 and the position vector of its centre is 3hat(i)+6hat(j)-hat(k).

The vector equation of the plane through the point 2hat(i)-hat(j)-4hat(k) and parallel to the plane rcdot(4hat(i)-12hat(j)-3hat(k))-7=0 is

Find a unit vector perpendicular to both the vectors (2hat(i)+3hat(j)+hat(k)) and (hat(i)-hat(j)-2hat(k)) .