Home
Class 12
MATHS
In a tetrahedron OABC, if OA=hat(i), OB=...

In a tetrahedron OABC, if `OA=hat(i), OB=hat(i)+hat(j) and OC=hat(i)+2hat(j)+hat(k)`,if shortest distance between egdes OA and BC is m, then `sqrt(2)m` is equal to …(where O is the origin).

Text Solution

Verified by Experts

The correct Answer is:
`(1)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the angle between vec(P) = - 2hat(i) +3 hat(j) +hat(k) and vec(Q) = hat(i) +2hat(j) - 4hat(k)

If vec(A)=4hat(i)+nhat(j)-2hat(k) and vec(B)=2hat(i)+3hat(j)+hat(k) , then find the value of n so that vec(A) bot vec(B)

Angle between the vectors vec(a)=-hat(i)+2hat(j)+hat(k) and vec(b)=xhat(i)+hat(j)+(x+1)hat(k)

A vector equally inclined to the vectors hat(i)-hat(j)+hat(k) and hat(i)+hat(j)-hat(k) then the plane containing them is

If vectors vec(A)=(hat(i)+2hat(j)+3hat(k))m and vec(B)=(hat(i)-hat(j)-hat(k))m represent two sides of a triangle, then the third side can have length equal to :

The compenent of vec(A)=hat(i)+hat(j)+5hat(j) perpendicular to vec(B)=3hat(i)+4hat(j) is

If vec(A) =2hat(i)-2hat(j) and vec(B)=2hat(k) then vec(A).vec(B) ……

The co-ordinate of the point P on the line r=(hat(i)+hat(j)+hat(k))+lambda(-hat(I)+hat(j)-hat(k)) which is nearest to the origin is

If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+2hat(j)+2hat(k) , find the magnitude of compinent of (vec(A)+vec(B)) along vec(B)

Find a unit vector perpendicular to both the vectors (2hat(i)+3hat(j)+hat(k)) and (hat(i)-hat(j)-2hat(k)) .