Home
Class 12
MATHS
If G be the centroid of the Delta ABC, t...

If G be the centroid of the `Delta ABC`, then prove that `AB^2+BC^2+CA^2=3(GA^2+GB^2+GC^2)`

Text Solution

Verified by Experts

The correct Answer is:
`3(GA^(2)+GB^(2)+GC^(2))`
Promotional Banner

Similar Questions

Explore conceptually related problems

lf G be the centroid of a triangle ABC and P be any other point in the plane prove that PA^2+PB^2+PC^2=GA^2+GB^2+GC^2+3GP^2

If r and R are radii of the incircle and circum-circle of DeltaABC, then prove that : 8rR{cos ^(2) A//2 +cos ^(2) B//2 +cos ^(2) C//2} =2bc+2ca+2ab-a^(2) -b^(2) -c^(2).

If A, B, C are the vertices of a triangle whose position vectros are vec a,vec b, vec c and G is the centroid of the DeltaABC, then overline(GA)+overline(GB)+overline(GC) =

In the given figure, if AD bot BC , prove that AB^(2)+CD^(2)= BD^(2)+AC^(2)

ABCD is a rhombus. Prove that AB^(2)+BC^(2)+CD^(2)+DA^(2)= AC^(2)+BD^(2) .

In the given figure, AD is a median of a DeltaABC and AM bot BC . Prove that : AC^(2)+AB^(2)= 2AD^(2)+(1)/(2) BC^(2)

In triangle ABC, AD is a median. Prove that AB + AC gt 2AD

ABC is a right triangle right angled at B. Let D and E be any points on AB and BC respectively. Prove that AE^(2) + CD^(2) = AC^(2) + DE^(2) .

D and E are points on the sides CA and CB respectively of a DeltaABC right angled at C. Prove that AE^(2)+BD^(2)= AB^(2)+DE^(2) .

The OABC is a tetrahedron such that OA^2+BC^2=OB^2+CA^2=OC^2+AB^2 ,then