Home
Class 12
MATHS
The vertices of a triangle are A(x1, x1t...

The vertices of a triangle are `A(x_1, x_1tantheta_1),B(x_2, x_2tantheta_2)a n dC(x_3, x_3tantheta_3)dot` if the circumcentre of `"Delta"A B C` coincides with the origin and `H( x , y )` is the orthocentre, show that ` y/( x )=(sintheta_1+ sintheta_2+sintheta_3)/(costheta_1+costheta_2+costheta_3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If sectheta=13/5 , show that (2sintheta-3costheta)/(4sintheta-9costheta)=3

If 21 tan theta= 20 , show that (1-sintheta+costheta)/(1+sintheta+costheta)=3/7

Find (dy)/(dx) if x=a(theta-sintheta) and y=a(1-costheta) .

If sintheta+costheta=1 , then the value of sin(2theta) is

Prove the following identities : (sintheta-costheta+1)/(sintheta+costheta-1)=1/(sectheta-tantheta)

If 3sintheta=2costheta then the value of sin2theta is …………..

Answer the following by a number or a word or a sentence : If 4tantheta=3, then find the value of (4sintheta-costheta)/(4sintheta+costheta)

Prove the following identities. where the angles involved are acute angles for which the expressions are defined. (sintheta-2sin^(3)theta)/(2cos^(3)theta-costheta)=tantheta

Prove that the determinent |{:(x,sintheta,costheta),(-sintheta,-x,1),(costheta,1,x):}| is independent from value of theta

Evaluate the determinants below in examples number 1 and 2 |{:(costheta,-sintheta),(sintheta,costheta):}|