Home
Class 12
MATHS
If the points (-2, 0), (-1,(1)/(sqrt(3))...

If the points `(-2, 0), (-1,(1)/(sqrt(3)))` and `(cos theta, sin theta)` are collinear, then the number of value of `theta in [0, 2pi]` is

Text Solution

Verified by Experts

The correct Answer is:
1
Promotional Banner

Similar Questions

Explore conceptually related problems

z=i+sqrt(3)=r(cos theta+sin theta)

If a= cos theta+ i sin theta , then find the value of (1+a)/(1-a)

(i) The points (-1, 0), (4, -2) and (cos 2theta, sin 2 theta) are collinear (ii) The points (-1,0), (4, -2) and ((1-tan^(2)theta)/(1+tan^(2)theta),(2tan theta)/(1+tan^(2)theta)) are collinear

If cos 2 theta =(sqrt(2)+1)( cos theta -(1)/(sqrt(2))) , then the value of theta is

If A = sin^2 theta+ cos^4 theta , then for all real values of theta

If 2sin^(2)theta=3costheta,"where "0lethetale2pi , then find the value of theta .

If 3 sin theta + 4 cos theta=5 , then find the value of 4 sin theta-3 cos theta .

If tan^(4)theta +tan^(2) theta = 1 , then the value of cos^(4)theta +cos^(2)theta is-

If costheta + sin theta = sqrt2 cos theta , prove that cos theta - sin theta = sqrt2 sin theta .

Prove that sqrt ((1+cos theta )/( 1-cos theta ) ) = cosec theta +cot theta , 0le theta le 90 ^(@)