Home
Class 12
MATHS
Vertices of a variable triangle are (3, ...

Vertices of a variable triangle are `(3, 4), (5 cos theta, 5 sin theta)` and `(5 sin theta, -5 cos theta)`, where `theta in R`. Locus of its orthocentre is

A

`x^(2)+y^(2)+6x+8y-25=0`

B

`x^(2)+y^(2)-6x+8y-25=0`

C

`x^(2)+y^(2)+6x-8y-25=0`

D

`x^(2)+y^(2)-6x-8y-25=0`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

The diameter of the nine point circle of the triangle with vertices (3, 4), (5 cos theta, 5 sin theta) and (5 sin theta, -5 cos theta) , where theta in R , is

If the coordinates of a variable point be (cos theta + sin theta, sin theta - cos theta) , where theta is the parameter, then the locus of P is

z=i+sqrt(3)=r(cos theta+sin theta)

If f (theta) = |sin theta| + |cos theta|, theta in R , then

Show that (1)/( cos theta ) -cos theta =tan theta .sin theta

If 3 sin theta + 4 cos theta=5 , then find the value of 4 sin theta-3 cos theta .

If sin^(100) theta - cos^(100) theta =1 , then theta is

The two legs of a right triangle are sin theta +sin ((3pi)/2-theta) and cos theta -cos( (3pi)/2-theta) The length of its hypotenuse is

Evaluate the following (sin theta +cos theta )^(2) +(sin theta -cos theta )^(2)

If A = [( 1, cos theta , 1),( - cos theta ,1,cos theta ),( -1 , - cos theta ,1)] where 0 le theta le 2 pi then …..