Home
Class 12
MATHS
(i) The points (-1, 0), (4, -2) and (cos...

(i) The points (-1, 0), (4, -2) and `(cos 2theta, sin 2 theta)` are collinear
(ii) The points (-1,0), (4, -2) and `((1-tan^(2)theta)/(1+tan^(2)theta),(2tan theta)/(1+tan^(2)theta))` are collinear

A

both statemnts are equivalent

B

statement (i) has more solution than statement (ii) for `theta`

C

statement (ii) has more solution than statement (i) for `theta`

D

None of the above

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (1+sin2theta)/(1-sin2theta)=((1+tantheta)/(1-tan theta))^(2)

tan^(2) theta-sec^(2) theta=….

Prove that, (sec8theta-1)/(sec4theta-1)=(tan8theta)/(tan2theta)

Prove that: (sec8theta-1)/(sec4theta-1)=(tan8theta)/(tan2theta)

Prove the following identities : (1+tan^(2)theta)/(1+cot^(2)theta)=((1-tantheta)/(1-cottheta))^(2)

Show that tan ^(2) theta +tan ^(4) theta =sec ^(4) theta -sec ^(2) theta

If the points (-2, 0), (-1,(1)/(sqrt(3))) and (cos theta, sin theta) are collinear, then the number of value of theta in [0, 2pi] is

Prove the following identities: (1+tan^(2)theta)+(1+1/(tan^(2)theta))=1/(sin^(2)theta-sin^(4)theta)

If tan^(4)theta +tan^(2) theta = 1 , then the value of cos^(4)theta +cos^(2)theta is-