Home
Class 12
MATHS
The diameter of the nine point circle of...

The diameter of the nine point circle of the triangle with vertices `(3, 4), (5 cos theta, 5 sin theta)` and `(5 sin theta, -5 cos theta)`, where `theta in R`, is

Text Solution

Verified by Experts

The correct Answer is:
5
Promotional Banner

Similar Questions

Explore conceptually related problems

Vertices of a variable triangle are (3, 4), (5 cos theta, 5 sin theta) and (5 sin theta, -5 cos theta) , where theta in R . Locus of its orthocentre is

z=i+sqrt(3)=r(cos theta+sin theta)

If f (theta) = |sin theta| + |cos theta|, theta in R , then

If sin^(100) theta - cos^(100) theta =1 , then theta is

If 3 sin theta + 4 cos theta=5 , then find the value of 4 sin theta-3 cos theta .

Show that (1)/( cos theta ) -cos theta =tan theta .sin theta

If the coordinates of a variable point be (cos theta + sin theta, sin theta - cos theta) , where theta is the parameter, then the locus of P is

what is the angle? when sin (theta)=4 and cos (theta)=5

If 0 lt theta lt (pi)/2 and 5 tan theta = 4 then (5 sin theta - 3 cos theta) / (sintheta +2 cos theta ) = 5/14

The number of solutions of cot(5pi sin theta )=tan (5 pi cos theta ), AA theta in (0,2pi) is