Home
Class 12
MATHS
If the points(a^3/(a-1),(a^2-3)/(a-1)), ...

If the points`(a^3/(a-1),(a^2-3)/(a-1))`, `(b^3/(b-1),(b^2-3)/(b-1))`, `(c^3/(c-1),(c^2-3)/(c-1))` are collinear for 3 distinct values `a,b,c` and `a!=1, b!=1, c!=1`, then find the value of `abc-(ab+bc+ca)+3(a+b+c)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If |a|=1,|b|=3 and |c|=5 , then the value of [a-b" "b-c" "c-a] is

Prove that : cot^(-1)((1+ab)/(a-b))+cot^(-1)((1+bc)/(b-c))+cot^(-1)((1+ca)/(c-a))=pi,(a>b>c>0)

Prove the followings : "cot"^(-1)(ab+1)/(a-b)+"cot"^(-1)(bc+1)/(b-c)+"cos"^(-1)(ca+1)/(c-a)=pi(agtbgtc)

If the points A(-1, -4) , B(b,c) and C(5,-1) are collinear and 2b + c = 4 , find the values of b and c.

If the points A(-1, 3, 2), B(-4, 2, -2) and C(5, 5, lambda ) are collinear then find the value of lambda .

If (log)_b a(log)_c a+(log)_a b(log)_c b+(log)_a c(log)_bc=3 (where a , b , c are different positive real numbers !=1), then find the value of a b c .

Show that the three points A(2, 3, 4), B(-1, 2, -3) and C(-4, 1, -10) are collinear and find the ratio in which C divides bar(AB) .

If the origin is the centroid of a triangle ABC having vertices A(a, 1, 3), B(-2, b, -5) and C(4, 7, c), Find the values of a, b, c.

Suppose a, b, c are positive integers with altbltc such that 1//a+1//b+1//c=1 . The value of (a+b+c-5) is …………

If vec(a) is a unit vector and vec(b)=(2,1,-1) and vec( c )=(1,0,3) . Then the maximum value of [vec(a)vec(b)vec( c )] is…………..