Home
Class 12
MATHS
Show that the two straight lines x^2(t...

Show that the two straight lines
`x^2(tan^2theta+cos^2theta)-2xy tantheta+y^2sin^2theta=0`
Move with the axis of x angles such that the difference of their tangents is 2 .

Text Solution

Verified by Experts

The correct Answer is:
`=(2)/(sintheta) sintheta=2`
Promotional Banner

Similar Questions

Explore conceptually related problems

The angle between the pair of straight lines y^2sin^2 theta-xy sin ^2 theta +x^2(cos ^2theta -1) =0 is

tan^(2) theta-sec^(2) theta=….

sin^(4) theta + cos ^(4) theta + 2sin^(2) theta cos ^(2) theta has value 1.

Show that tan ^(2) theta +tan ^(4) theta =sec ^(4) theta -sec ^(2) theta

Prove the following identities : sec^(2)theta-cos^(2)theta=sin^(2)theta(sec^(2)theta+1)

If x +y= 3-cos4theta and x-y=4sin2theta then

If tan theta = sqrt2-1 then tan (2theta)=1 .

Solve the equation (1-tantheta)(1+sin2theta)=1+tantheta