Home
Class 12
MATHS
C1 is a curve y^2=4x,C2 is curve obtaine...

`C_1` is a curve `y^2=4x,C_2` is curve obtained by rotating `C_1,120^@` in anti -clockwise direction `C_3` is reflection of `C_2` with respect to y=x and `S_1,S_2,S_3` are foci of `C_1,C_2` and `C_3`, respectively, where O is origin.
Area of `DeltaOS_2S_3` is

A

`1/8`

B

`1/4`

C

`1/2`

D

1

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

C_1 is a curve y^2=4x,C_2 is curve obtained by rotating C_1,120^@ in anti -clockwise direction C_3 is reflection of C_2 with respect to y=x and S_1,S_2,S_3 are foci of C_1,C_2 and C_3 , respectively, where O is origin. If (t^2,2t) are parametric form of curve C_1 , then the parametric form of curve C_2 is

C_1 is a curve y^2=4x,C_2 is curve obtained by rotating C_1,120^@ in anti -clockwise direction C_3 is reflection of C_2 with respect to y=x and S_1,S_2,S_3 are foci of C_1,C_2 and C_3 , respectively, where O is origin. IF S_1(x_1,y_1),S_2(x_2,y_2) and S_3(x_3,y_3) then the value of sumx_1^2+sumy_1^2 is

Let the sum of n, 2n, 3n terms of an A.P. be S_1, S_2 and S_3 , respectively, show that S_3 =3(S_2-S_1)

A is targeting to B, B and C are targeting to A. probability of hitting the target by A, B and C are 2/3, 1/2 and 1/3, respectively. If A is hit, then find the Probability that B hits the target and C does not.

The position vectors of four points P,Q,R annd S are 2a+4c,5a+ 3sqrt(3)b+4c,-2sqrt(3)b+c and 2a+c respectively, prove that PQ is parallel to RS.

If the centroid of tetrahedron OABC where A,B,C are given by (a,2,3),(1,b,2) and (2,1,c) respectively is (1,2,−2), then distance of P(a,b,c) from origin is

If the maximum and minimum values of y=(x^2-3x+c)/(x^2+3x+c) are 7 and 1/7 respectively then the value of c is equal to

For the reaction A+BhArr3C at 25^(@)C , a 3 litre volume reaction vessel contains 1,2 and 4 moles of A,B and C respectively at equilibrium, calculate the equilibrium constant K_(c) of the reaction at 25^(@)C .

Consider the two curves C_1 ; y^2 = 4x , C_2 : x^2 + y^2 - 6x + 1 = 0 then :

Let C_1 and C_2 be respectively, the parabolas x^2=y=-1 and y^2=x-1 Let P be any point on C_1 and Q be any point on C_2 . Let P_1 and Q_1 be the refelections of P and Q, respectively with respect to the line y=x. If the point p(pi,pi^2+1) and Q(mu^2+1,mu) then P_1 and Q_1 are