Home
Class 12
MATHS
prove that lim(x to pi//2)(sin(cot^(2)x)...

prove that `lim_(x to pi//2)(sin(cot^(2)x))/((pi-2x)^(2))= 1/4`

A

Statement 1 is true, Statement 2 is true, Statement 2 is correct explanation for statement 1.

B

Statement 1 is true, Statement 2 is true, Statement 2 is not the correct explanation for statement 1.

C

Statement 1 is true, Statement 2 is false

D

Statement 1 is false, Statement 2 is true

Text Solution

Verified by Experts

The correct Answer is:
A, B, D
Promotional Banner

Similar Questions

Explore conceptually related problems

The lim_(xto(pi)/2)(cot x-cosx)/((pi-2x)^(3)) equals

Evaluate the following limits: lim_(xto pi)(sqrt(2+cosx)-1)/((pi-x)^(2))

The value of lim_(xto pi//4)((cosx+sinx)^(3)-2sqrt(2))/(1-sin2x) is

Prove that, sin^(2)((pi)/(8)+(A)/(2))-sin^(2)((pi)/(8)-(A)/(2))=(1)/(sqrt(2))sinA

Prove that : sin^(2)((pi)/(6))+cos^(2)((pi)/(3))-tan^(2)((pi)/(4))=-(1)/(2)

Prove that (cos(pi+x)cos(-x))/(sin(pi-x)cos((pi)/(2)+x))=cot^(2)x

Prove that, cos^(2)x+cos^(2)(x+(pi)/(3))+cos^(2)(x-(pi)/(3))=(3)/(2) .

Prove that, sin^(2)((pi)/(18))+sin^(2)((pi)/(9))+sin^(2)((7pi)/(18))+sin^(2)((4pi)/(9))=2