Home
Class 12
MATHS
Let f: N -> R and g : N -> R be two fun...

Let `f: N -> R and g : N -> R` be two functions and `f(1)=0.8, g(1)=0.6`, `f(n+1)=f(n)cos(g(n))-g(n)sin(g(n)) and g (n+1)=f(n) sin(g(n))+g(n) cos(g(n))` for `n>=1`. `lim_(n->oo) f(n)` is equal to

A

`-1`

B

`0`

C

`1`

D

does not exist

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n -> oo) (((n+1)(n+2)(n+3).......3n) / n^(2n))^(1/n) is equal to

Let f : R - {n} rarr R be a function defined by f(x)=(x-m)/(x-n) , where m ne n . Then,

If f(x)=(a-x^(n))^(1/n) , where a gt 0 and n in N , then fof (x) is equal to

For n epsilon N let x_(n) be defined as (1+1/n)^((n+x_(n)))=e then lim_(nto oo)(2x_(n)) equals…..

((n),(r))+((n),(r-1))=((n+1),(r-1))

evaluate lim_(n->oo)((e^n)/pi)^(1/ n)

Let f, g : R to R be defined, respectively byt f(x)=x+1, g(x)=2x-3. Find f+g, f-g and f/g .

If f(1) = 1, f(n+1)= 2f (n) + 1, n ge 1 then f(n) = .........

Let f:N rarr R be such that f(1)=1 and f(1)+2f(2)+3f(3)+…+nf(n)=n(n+1)f(n), for n ge 2, then (2010f(2010)) is ……….. .

lf f is a differentiable function satisfying f(1/n)=0,AA n>=1,n in I , then