Home
Class 12
MATHS
Number of solutions of the equation cose...

Number of solutions of the equation `cosectheta=k` in `[0,pi]` where `k=lim_(n->oo)pi_(r=2)^n((r^3-1)/(r^3+1))` is

Text Solution

Verified by Experts

The correct Answer is:
0
Promotional Banner

Similar Questions

Explore conceptually related problems

evaluate lim_(n->oo)((e^n)/pi)^(1/ n)

The value of lim_(n->oo) sum_(k=1)^n log(1+k/n)^(1/n) ,is

The value of the lim_(n->oo)tan{sum_(r=1)^ntan^(- 1)(1/(2r^2))} is equal to

((n),(r))+((n),(r-1))=((n+1),(r-1))

Definite integration as the limit of a sum : lim_(ntooo)sum_(r=1)^(n)(1)/(n)e^(r/(n))=.............

Discuss the continuity of f(x), where f(x) = lim_(n rarr oo) ("sin"(pi x)/(2))^(2n)

sum_(r=1)^n(2r+1)=...... .

Sum of the series sum_(r=1)^(n) (r^(2)+1)r! is

Definite integration as the limit of a sum : lim_(ntooo)sum_(K=1)^(n)(K)/(n^(2)+K^(2))=......

The value of lim_(n->oo)sum_(k=1)^n(6^k)/((3^k-2^k)(3^(k+1)-2^(k+1)) is equal to