Home
Class 12
MATHS
Definite integration as the limit of a s...

Definite integration as the limit of a sum :
`lim_(ntooo)[(1)/(n)+(1)/(sqrt(n^(2)+n))+(1)/(sqrt(n^(2)+2n))+.......+(1)/(sqrt(n^(2)+(n-1)n))]=.........`

Text Solution

Verified by Experts

The correct Answer is:
2
Promotional Banner

Similar Questions

Explore conceptually related problems

Definite integration as the limit of a sum : lim_(ntooo)[(n!)/(n^(n))]^(1/n)=.........

Definite integration as the limit of a sum : lim_(ntooo)(1)/(n)+(1)/(n+1)+(1)/(n+2)+.......+(1)/(2n)

Definite integration as the limit of a sum : lim_(ntooo)sum_(K=1)^(n)(K)/(n^(2)+K^(2))=......

Definite integration as the limit of a sum : lim_(ntooo)sum_(r=1)^(4n)(sqrtn)/(sqrtr(3sqrtr+4sqrtn)^(2))=...........

Definite integration as the limit of a sum : lim_(ntooo)[(1+(1)/(n^(2)))(1+(2^(2))/(n^(2)))(1+(3^(2))/(n^(2)))......(1+(n^(2))/(n^(2)))]^(1/n)=.......

Definite integration as the limit of a sum : lim_(ntooo)[(n)/(1+n^(2))+(n)/(4+n^(2))+(n)/(9+n^(2))+.........+(n)/(2n^(2))]=......

Definite integration as the limit of a sum : lim_(ntooo)sum_(k=0)^(n)(n)/(n^(2)+k^(2))=..........

Definite integration as the limit of a sum : lim_(ntooo)sum_(r=1)^(n)(1)/(n)e^(r/(n))=.............

Definite integration as the limit of a sum : lim_(ntooo)(1)/(n)sum_(r=n+1)^(2n)log(1+(r)/(n))=.............

Definite integration as the limit of a sum : lim_(ntooo)[(1)/(n)+(n^(2))/((n+1)^(3))+(n^(2))/((n+2)^(3))+.........+(1)/(8n)]=........