Home
Class 12
MATHS
If lim+(n to oo)sum(r=1)^(n)(kr)/(1xx3xx...

If `lim+(n to oo)sum_(r=1)^(n)(kr)/(1xx3xx5xx….xx(2r-1)xx(2r+1))=1` then `k^(2)` is ……

Text Solution

Verified by Experts

The correct Answer is:
4
Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(r=1)^n(2r+1)=...... .

Show that the middle term in the expansion of (x-1/x)^(2n) is (1xx3xx5xx....xx(2n-1))/(n!) xx(-2)^(n)

If f(x+y+z)=f(x)+f(y)+f(z) with f(1)=1 and f(2)=2 and x,y, z epsilonR the value of lim_(xtooo)sum_(r=1)^(n)((4r)f(3r))/(n^(3)) is ……….

Sum of the series sum_(r=1)^(n) (r^(2)+1)r! is

f(n)=sum_(r=1)^(n) [r^(2)(""^(n)C_(r)-""^(n)C_(r-1))+(2r+1)(""^(n)C_(r ))] , then

The value of lim_(n->oo) sum_(k=1)^n log(1+k/n)^(1/n) ,is

The value of the lim_(n->oo)tan{sum_(r=1)^ntan^(- 1)(1/(2r^2))} is equal to

The value of lim_(n->oo)sum_(k=1)^n(6^k)/((3^k-2^k)(3^(k+1)-2^(k+1)) is equal to

The value of lim_(nto oo)(1^(3)+2^(3)+3^(3)+……..+n^(3))/((n^(2)+1)^(2))

(1)/(2 xx 5) + (1)/(5 xx 8) + (1)/(8 xx 11) + …..100 terms= ……