Home
Class 12
MATHS
If f(x+y+z)=f(x)+f(y)+f(z) with f(1)=1 a...

If `f(x+y+z)=f(x)+f(y)+f(z)` with `f(1)=1` and `f(2)=2` and `x,y, z epsilonR` the value of `lim_(xtooo)sum_(r=1)^(n)((4r)f(3r))/(n^(3))` is ……….

Text Solution

Verified by Experts

The correct Answer is:
4
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f : R rarr R be a differentiable function at x = 0 satisfying f(0) = 0 and f'(0) = 1, then the value of lim_(x to 0) (1)/(x) . sum_(n=1)^(oo)(-1)^(n).f((x)/(n)) , is

f(x)= 2x^(n) + a . If f(2)= 26 and f(4)= 138 then the value of f(3) is……..

If 2f(x)=f(x y)+f(x/y) for all positive values of x and y,f(1)=0 and f'(1)=1, then f(e) is.

f(x+ y) = f(x) f(y) , For AA x and y . If f(3)= 3 and f'(0) =11 then f'(3)= …….

f(x)+f(1-1/x)=1+x for x in R-{0,1}. Find the value of 4f(2).

f: Z rarr Z, f(n)= (-1)^(n) . Find the range of f.

A derivable function f : R^(+) rarr R satisfies the condition f(x) - f(y) ge log((x)/(y)) + x - y, AA x, y in R^(+) . If g denotes the derivative of f, then the value of the sum sum_(n=1)^(100) g((1)/(n)) is

Let f(x)=1/2[f(xy)+f(x/y)] " for " x,y in R^(+) such that f(1)=0,f'(1)=2. f(e) is equal to

If f:R rarr R is continuous function satisfying f(0) =1 and f(2x) -f(x) =x, AAx in R , then lim_(nrarroo) (f(x)-f((x)/(2^(n)))) is equal to

If f is a function satisfying f (x +y) = f(x) f(y) for all x, y in N such that f(1) = 3 and sum _(x=1)^nf(x)=120 , find the value of n.