Home
Class 12
MATHS
If alpha is the number of solution of |x...

If `alpha` is the number of solution of `|x|=log(x-[x])`, (where [.] denotes greatest integer function) and
`lim_(xto alpha)(xe^(ax)-bsinx)/(x^(3))` is finite, the value of `(a-b)` is

Text Solution

Verified by Experts

The correct Answer is:
-1
Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=log(x-[x]) , where [*] denotes the greatest integer function. find the domain of f(x).

Find the number of solution of the equations |cos x |=[x] , (where [.] denotes the greatest integer function ).

If [.] denotes the greatest integer function, then lim_(xto0) [(x^2)/(tanx sin x)] , is

The period of the function f(x)=Sin(x +3-[x+3]) where [] denotes the greatest integer function

The value of lim_(xto0)|x|^([cosx]) , [.] denotes greatest integer function is

Sketch the curves (ii) y=[x]+sqrt(x-[x]) (where [.] denotes the greatest integer function).

domin of f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

find the domain of f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

If [x]^(2)- 5[x] + 6= 0 , where [.] denote the greatest integer function, then

The value of lim_(xto1)({1-x+[x]+[1-x]} (where [.] donetes the greatest integral function) is