Home
Class 12
MATHS
The largest value of non negative intege...

The largest value of non negative integer a for which `lim_(x->1){(-a x+sin(x-1)+a]/(x+sin(x-1)-1)}^((1-x)/(1-sqrt(x)))=1/4`

Text Solution

Verified by Experts

The correct Answer is:
2
Promotional Banner

Similar Questions

Explore conceptually related problems

the largest negative integer which satisfies (x^2-1)/((x-2)(x-3))>0

cos^(- 1)x=2sin^(- 1)sqrt((1-x)/2)=2cos^(- 1)sqrt((1+x)/2)

The least positive integer n for which ((1+i)/(1-i))^n= 2/pi sin^-1 ((1+x^2)/(2x)) , where x> 0 and i=sqrt-1 is

The value of lim_(xto1^(+))(int_(1)^(x)|t-1|dt)/(sin(x-1)) is

lim_(xto1)cos^(-1)((1-sqrt(x))/(1-x))= .......

The least positive integer n for which ((1+i)/(1-i))^(n)=(2)/(pi)(sec^(-1)""(1)/(x)+sin^(-1)x) (where, Xne0,-1leXle1andi=sqrt(-1), is

Solve sin^(-1)x-cos^(-1)x=sin^(-1)(3x-2)

Integrate the functions (sin^(-1)x)/(sqrt(1-x^(2)))