Home
Class 12
MATHS
lim(n -> oo) (((n+1)(n+2)(n+3).......3n)...

`lim_(n -> oo) (((n+1)(n+2)(n+3).......3n) / n^(2n))^(1/n)`is equal to

A

`18/(e^(4))`

B

`27/(e^(2))`

C

`9/(e^(2))`

D

`3log3-2`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(n->oo)sum_(k=1)^n(6^k)/((3^k-2^k)(3^(k+1)-2^(k+1)) is equal to

If z_(r)=cos((ralpha)/(n^(2)))+isin((ralpha)/(n^(2))),"where"r=1,2,3,...,nandi=sqrt(-1),"then"lim_(n to oo) z_(1)z_(2)z_(3)...z_(n) is equal to

lim_(ntooo)(1^(2)+2^(2)+3^(2)+.....+n^(2))/(n^(3)) =........

evaluate lim_(n->oo)((e^n)/pi)^(1/ n)

The value of lim_(n -> oo)(1.n+2.(n-1)+3.(n-2)+...+n.1)/(1^2+2^2+...+n^2)

Let f: N -> R and g : N -> R be two functions and f(1)=0.8, g(1)=0.6 , f(n+1)=f(n)cos(g(n))-g(n)sin(g(n)) and g (n+1)=f(n) sin(g(n))+g(n) cos(g(n)) for n>=1 . lim_(n->oo) f(n) is equal to

Definite integration as the limit of a sum : lim_(ntooo)[(1+(1)/(n^(2)))(1+(2^(2))/(n^(2)))(1+(3^(2))/(n^(2)))......(1+(n^(2))/(n^(2)))]^(1/n)=.......

lim_(ntooo)(1+2+3+. . . +n)/(n^(2))= . . . . .

Definite integration as the limit of a sum : lim_(ntooo)[(n)/(1+n^(2))+(n)/(4+n^(2))+(n)/(9+n^(2))+.........+(n)/(2n^(2))]=......

P(n) : 1^(2) + 2^(2) + 3^(2) + .......+ n^(2) = n/6(n+1) (2n+1) n in N is true then 1^(2) +2^(2) +3^(2) + ........ + 10^(2) = .......