Home
Class 12
MATHS
If f(a)=-1,f'(a)=4,g(a)=1,g'(a)=-1 then ...

If `f(a)=-1,f'(a)=4,g(a)=1,g'(a)=-1` then `lim_(xtoa)(g(x)f(a)-g(a)f(x))/(x-a)`

A

`-5`

B

`3`

C

`-3`

D

`5`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Let fandg be real valued functions defined on interval (-1,1) such that g''(x) is constinous, g(0)!=0 , g'(0)=0,g''(0)!=0andf(x)=g(x)sinx . Statement I lim_(xrarr0)(g(x)cotx-g(0)cosecx)=f''(0) Statement II f'(0)=g(0)

If f(x)=(a x^2+b)^3, then find the function g such that f(g(x))=g(f(x))dot

Let f(x)=x^(2)-2x and g(x)=f(f(x)-1)+f(5-f(x)), then

f(x)= x, g(x)= (1)/(x) and h(x)= f(x) g(x). If h(x) = 1 then…….

Given (f(x) =log_(10) x and g(x) = e^(piix) . phi (x) =|{:(f(x).g(x),(f(x))^(g(x)),1),(f(x^(2)).g(x^(2)),(f(x^(2)))^(g(x^(2))),0),(f(x^(3)).g(x^(3)),(f(x^(3)))^(g(x^(3))),1):}| the value of phi (10), is

If f(x)=ax+b and g(x)=cx+d, then f(g(x))=g(f(x)) is equivalent to

If f(x)=sinx,g(x)=x^(2)andh(x)=logx. IF F(x)=h(f(g(x))), then F'(x) is

The function f : R^(+) rarr R^(+), f(x) =x^3,g: R^(+)rarr R^(+),g(x) =x^(1/3) then (fog)(x) = .........

If f'(x)=g'(x) , then . . . . . . .