Home
Class 12
MATHS
The value of lim(xto0)(x cosx-log(1+x))/...

The value of `lim_(xto0)(x cosx-log(1+x))/(x^(2))` is

A

`1`

B

`1/4`

C

`1/2`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(xto0)(p^(x)-q^(x))/(r^(x)-s^(x)) is

The value of lim_(xto0)(1/(x^(2))-cotx) is

lim_(xto0)(sin(picos^(2)x))/(x^(2)) is equal to

The value of lim_(xto 0)(e-(1+x)^(1//x))/(tanx) is

The value of lim_(xto0)((1^(x)+2^(x)+3^(x)+…………+n^(x))/n)^(a//x) is

lim_(xrarr0)(1-cos(2x))/x^(2) = 0.

If log_(10)(sin(x+pi/4))=(log_(10)6-1)/2 , the value of log_(10)(sinx)+log_(10)(cosx) is

lim_(xto0) (e^(x^(2))-cosx)/(x^2) is equal to