Home
Class 12
MATHS
The value of lim(nto oo)(1^(3)+2^(3)+3^(...

The value of `lim_(nto oo)(1^(3)+2^(3)+3^(3)+……..+n^(3))/((n^(2)+1)^(2))`

A

`1/4`

B

`1/2`

C

`1/(2sqrt(2))`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

1^(3)+2^(3)+3^(3)+. . .+n^(3)=((n(n+1))/(2))^(2) .

The value of lim_(xto0)((1^(x)+2^(x)+3^(x)+…………+n^(x))/n)^(a//x) is

lim_(ntooo)(1^(2)+2^(2)+3^(2)+.....+n^(2))/(n^(3)) =........

Definite integration as the limit of a sum : lim_(ntooo)(1^(p)+2^(p)+3^(p)+.......+n^(p))/(n^(p+1))=...........

The value of lim_(nto oo)(a^(n)+b^(n))/(a^(n)-b^(n)), (where agtbgt1 is

Definite integration as the limit of a sum : lim_(ntooo)[(1)/(n)+(n^(2))/((n+1)^(3))+(n^(2))/((n+2)^(3))+.........+(1)/(8n)]=........

The value of lim_(xtoo^+){lim_(ntooo)([1^(2)(sinx)^(x)]+[2^(2)(sinx)^(x)]+……….+[n^(2)(sinx)^(x)])/(n^(3))} is (wehre [.] denotes the greatest integer function)

The value of lim_(n -> oo)(1.n+2.(n-1)+3.(n-2)+...+n.1)/(1^2+2^2+...+n^2)

Definite integration as the limit of a sum : lim_(ntooo)[(1+(1)/(n^(2)))(1+(2^(2))/(n^(2)))(1+(3^(2))/(n^(2)))......(1+(n^(2))/(n^(2)))]^(1/n)=.......

The value of lim_(n->oo)sum_(k=1)^n(6^k)/((3^k-2^k)(3^(k+1)-2^(k+1)) is equal to