Home
Class 12
MATHS
The value of lim(n -> oo)(1.n+2.(n-1)+3....

The value of `lim_(n -> oo)(1.n+2.(n-1)+3.(n-2)+...+n.1)/(1^2+2^2+...+n^2)`

A

`1`

B

`-1`

C

`1/(sqrt(2)`

D

`1/2`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

evaluate lim_(n->oo)((e^n)/pi)^(1/ n)

The value of lim_(n->oo) sum_(k=1)^n log(1+k/n)^(1/n) ,is

The value of lim_(nto oo)(1^(3)+2^(3)+3^(3)+……..+n^(3))/((n^(2)+1)^(2))

lim_(ntooo)(1+2+3+. . . +n)/(n^(2))= . . . . .

The value of lim(n->oo)((1.5)^n + [(1 + 0.0001)^(10000)]^n)^(1/n) , where [.] denotes the greatest integer function is:

Let S_(n),n=1,2,3,"…" be the sum of infinite geometric series, whose first term is n and the common ratio is (1)/(n+1) . Evaluate lim_(n to oo)(S_(1)S_(n)+S_(2)S_(n-1)+S_(3)S_(n-2)+"..."+S_(n)S_(1))/(S_(1)^(2)+S_(2)^(2)+"......"+S_(n)^(2)) .

The value of the lim_(n->oo)tan{sum_(r=1)^ntan^(- 1)(1/(2r^2))} is equal to

If n is an odd integer greater than or equal to 1, then the value of n^3 - (n-1)^3 + (n-2)^3 - (n-3)^3 + .... + (-1)^(n-1) 1^3

lim_(n -> oo) (((n+1)(n+2)(n+3).......3n) / n^(2n))^(1/n) is equal to

Evaluate: (lim)_(n->oo)[1/(n a)+1/(n a+1)+1/(n a+2)++1/(n b)]