Home
Class 12
MATHS
The value of lim(n->oo)((1.5)^n + [(1 + ...

The value of `lim(n->oo)((1.5)^n + [(1 + 0.0001)^(10000)]^n)^(1/n)`, where [.] denotes the greatest integer function is:

A

1

B

`1/2`

C

does'nt exist

D

2

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

lim _(x rarr 1) (xsin(x−[x])) /(x-1) ​ , where [.] denotes the greatest integer function, is equal to

The function f(x) = [x] cos((2x-1)/2) pi where [ ] denotes the greatest integer function, is

evaluate lim_(n->oo)((e^n)/pi)^(1/ n)

The value of lim_(n->oo) sum_(k=1)^n log(1+k/n)^(1/n) ,is

The value of lim_(xto0)|x|^([cosx]) , [.] denotes greatest integer function is

If [sin^-1 (cos^-1(sin^-1 (tan^-1 x)))]=1 , where [*] denotes the greatest integer function, then x in

Statement-1: the highest power of 3 in .^(50)C_(10) is 4. Statement-2: If p is any prime number, then power of p in n! is equal to [n/p]+[n/p^(2)]+[n/p^(3)] + . . ., where [*] denotes the greatest integer function.

Let f:NrarrN be a function such x-f(x)=19[(x)/(19)]-90[(f(x))/(90)],AAx in N , where [.] denotes the greatest integer function and [.] denotes the greatest integers function and 1900ltf(1990)lt2000 , then possible value of f(1990) is

The complete solution set of the inequality [cot^(-1)x]^2-6[cot^(-1)x]+9leq0 where [ ] denotes greatest integer function, is

The value of lim_(xtoo^+){lim_(ntooo)([1^(2)(sinx)^(x)]+[2^(2)(sinx)^(x)]+……….+[n^(2)(sinx)^(x)])/(n^(3))} is (wehre [.] denotes the greatest integer function)