Home
Class 12
MATHS
The value of lim(xto0)(sin[x])/([x]) (wh...

The value of `lim_(xto0)(sin[x])/([x])` (where [.] denotes the greatest integer function) is

A

1

B

`sin1`

C

does'nt exist

D

None of these

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(xto1)({1-x+[x]+[1-x]} (where [.] donetes the greatest integral function) is

lim _(x rarr 1) (xsin(x−[x])) /(x-1) ​ , where [.] denotes the greatest integer function, is equal to

If f(x)=e^(sin(x-[x])cospix) , where [x] denotes the greatest integer function, then f(x) is

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

The value of lim_(xto0)|x|^([cosx]) , [.] denotes greatest integer function is

domin of f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

Sketch the curves (ii) y=[x]+sqrt(x-[x]) (where [.] denotes the greatest integer function).

find the domain of f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.