Home
Class 12
MATHS
The value of lim(n->oo) sum(k=1)^n log(1...

The value of `lim_(n->oo) sum_(k=1)^n log(1+k/n)^(1/n)`,is

A

`log_(e)(e/4)`

B

`log_(e)(4/e)`

C

`log_(e)4`

D

None of these

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(n->oo)sum_(k=1)^n(6^k)/((3^k-2^k)(3^(k+1)-2^(k+1)) is equal to

The value of the lim_(n->oo)tan{sum_(r=1)^ntan^(- 1)(1/(2r^2))} is equal to

The value of lim(n->oo)((1.5)^n + [(1 + 0.0001)^(10000)]^n)^(1/n) , where [.] denotes the greatest integer function is:

Let f : R rarr R be a differentiable function at x = 0 satisfying f(0) = 0 and f'(0) = 1, then the value of lim_(x to 0) (1)/(x) . sum_(n=1)^(oo)(-1)^(n).f((x)/(n)) , is

Definite integration as the limit of a sum : lim_(ntooo)sum_(r=1)^(n)(1)/(n)e^(r/(n))=.............

The value of lim_(nto oo)(a^(n)+b^(n))/(a^(n)-b^(n)), (where agtbgt1 is

evaluate lim_(n->oo)((e^n)/pi)^(1/ n)

Definite integration as the limit of a sum : lim_(ntooo)sum_(K=1)^(n)(K)/(n^(2)+K^(2))=......

The value of lim_(n -> oo)(1.n+2.(n-1)+3.(n-2)+...+n.1)/(1^2+2^2+...+n^2)

Definite integration as the limit of a sum : lim_(ntooo)sum_(k=0)^(n)(n)/(n^(2)+k^(2))=..........