Home
Class 12
MATHS
Evaluate: (lim)(n->oo)[1/(n a)+1/(n a+1)...

Evaluate: `(lim)_(n->oo)[1/(n a)+1/(n a+1)+1/(n a+2)++1/(n b)]`

A

`log(a/b)`

B

`log(b/a)`

C

`log(ab)`

D

None of these

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

evaluate lim_(n->oo)((e^n)/pi)^(1/ n)

Definite integration as the limit of a sum : lim_(ntooo)(1)/(n)+(1)/(n+1)+(1)/(n+2)+.......+(1)/(2n)

Prove that (n!) (n + 2) = [n! + (n + 1)!]

The value of lim_(n->oo) sum_(k=1)^n log(1+k/n)^(1/n) ,is

The value of lim(n->oo)((1.5)^n + [(1 + 0.0001)^(10000)]^n)^(1/n) , where [.] denotes the greatest integer function is:

The value of the lim_(n->oo)tan{sum_(r=1)^ntan^(- 1)(1/(2r^2))} is equal to

Definite integration as the limit of a sum : lim_(ntooo)[(1)/(n)+(1)/(sqrt(n^(2)+n))+(1)/(sqrt(n^(2)+2n))+.......+(1)/(sqrt(n^(2)+(n-1)n))]=.........

Definite integration as the limit of a sum : lim_(ntooo)[(1)/(n)+(n^(2))/((n+1)^(3))+(n^(2))/((n+2)^(3))+.........+(1)/(8n)]=........

Evaluate S=sum_(n=0)^n(2^n)/((a^(2^n)+1) (where a>1) .

The value of lim_(n -> oo)(1.n+2.(n-1)+3.(n-2)+...+n.1)/(1^2+2^2+...+n^2)