Home
Class 12
MATHS
Fill in the blanks so that the resulting...

Fill in the blanks so that the resulting statement is correct. Let `f(x) = [x + 2] sin((pi)/([x + 1]))`, where `[*]` denotes greatest integral function. The domain of f is ……….and the points of discontinuity of f in the domain are

Text Solution

Verified by Experts

The correct Answer is:
`x in (-oo, -1) uu [0, oo)`
Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=log(x-[x]) , where [*] denotes the greatest integer function. find the domain of f(x).

f(x)=sin^(-1)[2x^(2)-3] , where [*] denotes the greatest integer function. Find the domain of f(x).

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

The function f(x) = [x] cos((2x-1)/2) pi where [ ] denotes the greatest integer function, is

If f(x) = [x] , where [*] denotes greatest integral function. Then, check the continuity on (1, 2]

If f(x)=e^(sin(x-[x])cospix) , where [x] denotes the greatest integer function, then f(x) is

find the domain of f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

f(x)= 1/sqrt([x]+x) , where [*] denotes the greatest integeral function less than or equals to x. Then, find the domain of f(x).

domin of f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

Find the domain of function f(x)= (1)/([abs(x-1)]+[abs(7-x)]-6) where [*] denotes the greatest integral function .