Home
Class 12
MATHS
Let [.] represent the greatest integer f...

Let `[.]` represent the greatest integer function and `f (x)=[tan^2 x]` then :

A

`underset(x rarr 0)(lim) f(x)` doesn't exist

B

f(x) is continuous at x = 0

C

f(x) is not differentiable at x = 0

D

`f'(0) = 1`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Range of greatest integer function is…….

Let f:NrarrN be a function such x-f(x)=19[(x)/(19)]-90[(f(x))/(90)],AAx in N , where [.] denotes the greatest integer function and [.] denotes the greatest integers function and 1900ltf(1990)lt2000 , then possible value of f(1990) is

Let [x] be the greatest integer function f(x)=(sin(1/4(pi[x]))/([x])) is

If [sin x]+[sqrt(2) cos x]=-3 , x in [0,2pi] , (where ,[.] denotes th greatest integer function ), then

If f(x)=e^(sin(x-[x])cospix) , where [x] denotes the greatest integer function, then f(x) is

If [x]^(2)- 5[x] + 6= 0 , where [.] denote the greatest integer function, then

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

If [sin^-1 (cos^-1(sin^-1 (tan^-1 x)))]=1 , where [*] denotes the greatest integer function, then x in

The function f (x) = tan x-x ………..

If [.] denotes the greatest integer function, then lim_(xto0) [(x^2)/(tanx sin x)] , is