Home
Class 12
MATHS
If f(x) = [2 + 5|n| sin x], where n in I...

If `f(x) = [2 + 5|n| sin x]`, where `n in I` has exactly 9 points of non-derivability in `(0, pi)`, then possible values of n are (where [x] dentoes greatest integer function)

A

`+- 3`

B

`+- 2`

C

`+- 1`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If [x]^(2)- 5[x] + 6= 0 , where [.] denote the greatest integer function, then

If f(x)=e^(sin(x-[x])cospix) , where [x] denotes the greatest integer function, then f(x) is

If [sin x]+[sqrt(2) cos x]=-3 , x in [0,2pi] , (where ,[.] denotes th greatest integer function ), then

Find the domain and range of f(x)=log[ cos|x|+1/2] ,where [.] denotes the greatest integer function.

Discuss the continuity and differentiability for f(x) = [sin x] when x in [0, 2pi] , where [*] denotes the greatest integer function x.

The function f(x) = [x] cos((2x-1)/2) pi where [ ] denotes the greatest integer function, is

The period of the function f(x)=Sin(x +3-[x+3]) where [] denotes the greatest integer function

domin of f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

Find the values of x graphically satisfying [x]-1+x^(2)le0 where [.] denotes the greatest integer function.

find the domain of f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.