Home
Class 12
MATHS
The number of points of discontinuity of...

The number of points of discontinuity of `f(x)=[2x]^(2)-{2x}^(2)` (where [ ] denotes the greatest integer function and { } is fractional part of x) in the interval `(-2,2)`, is

A

6

B

8

C

4

D

3

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

domin of f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

find the domain of f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

If [x]^(2)- 5[x] + 6= 0 , where [.] denote the greatest integer function, then

Solve 1/[x]+1/([2x])= {x}+1/3where [.] denotes the greatest integers function and{.} denotes fractional part function.

The function f(x) = [x] cos((2x-1)/2) pi where [ ] denotes the greatest integer function, is

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

If f(x)=e^(sin(x-[x])cospix) , where [x] denotes the greatest integer function, then f(x) is

f(x)=sin^(-1)[2x^(2)-3] , where [*] denotes the greatest integer function. Find the domain of f(x).

f(x)=log(x-[x]) , where [*] denotes the greatest integer function. find the domain of f(x).

Number points of discontinuity of f(x)=tan^2x- sec^2 x in (0,2pi) is